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There are two different schools of thought on the concept of statistics and 
probability:  

• in the frequentist approach, probabilities are fixed and represent the 
frequency of an event that will happen in a large number of observations, 
while 

• in the Bayesian approach, probabilities are interpreted as one’s belief in the 
plausibility of an outcome from occurring, and this belief is constantly 
updated upon the arrival of new information.  

Using the housing market to illustrate these differences, frequentists would 
calculate the probability of foreclosure in a given area using its long-run historical 
data and assume that this probability is fixed; while the Bayesian approach would 
adjust this probability dynamically based on latest observations of various factors 
such as the underlying economic conditions, interest rates and credit scores.  

Although frequentist statistics is widely used in various applications, critics often 
highlight the rigid approach as its Achilles’ heel. In fact, the 2008 financial crisis 
can be attributed to the use of frequentist probabilities, where the assumption of 
a fixed foreclosure rate was one of the reasons that led to the understatement of 
risks. Given the subjective nature and large uncertainty in quantitative finance, the 
Bayesian approach is now the preferred method because it overcomes these 
limitations by: 

• providing a natural framework of incorporating prior information with new 
observations, and also 

• accounting for uncertainties. 

In this article, we briefly describe a novel methodology that uses Bayesian 
learning to calibrate a stochastic model, in particular, the Vasicek model that is 
commonly used to simulate mean-reverting patterns such as the movement of 
interest rates, 

𝑑𝑟! = 𝑎(𝑏 − 𝑟!)𝑑𝑡 + 𝜎𝑑𝑊! , 

where 𝑟! is the interest rate at time t, 𝑑𝑟! is the change in interest rate at time t, 𝑎 
is the speed of mean reversion, 𝑏 is the long-term mean value of 𝑟!, 𝜎 is the volatility 
size, and 𝑑𝑊! is the Wiener process that uses a standard normal distribution to 
describe a random 1D Brownian motion. In other words, the Vasicek model 
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assumes that interest rates fluctuate around the long-term mean 𝑏 with an 
amplitude of 𝜎, and 𝑎 determines the speed at which 𝑟! reverts back to 𝑏. 

The figure below shows the movement of interest rates that is generated using a 
Vasicek model with two different set of parameters (𝜃"#$%&'(:	𝑎, 𝑏 and 𝜎). The first 
set of data points (time step, t < 700), labelled “Regime 1”, were generated with a 
mean-reversion speed (𝑎) of 0.008 with an equilibrium value (𝑏) of 0.03 and a 
volatility (𝜎) of 0.0001; while the final set of data points (t > 1200), “Regime 2”, 
were produced using a lower mean-reversion speed (𝑎 = 0.006) and equilibrium 
value (𝑏 = 0.02) with a larger volatility (𝜎 = 0.00015). Here, we show that a Bayesian 
inference algorithm is capable of extracting the evolution of 𝜃"#$%&'( by observing 
the change in interest rates at each time step.  

 

The Bayesian inference algorithm requires an initial estimate of the model 
parameters (𝜃"#$%&'(: 𝑎, 𝑏	and	𝜎) and its search space to be defined. We fit the first 
10% of the data points (𝑟":$%") with a maximum likelihood estimate (MLE) and 
defined the search space of each 𝜃"#$%&'( to be between 10% and 200% of their 
initial MLE estimates. While the search space is fixed in this example, the algorithm 
can easily be extended to account for a dynamic search space.  

With the initial estimate and search space defined, we can now use a Bayesian 
approach to estimate the possible range of 𝜃"#$%&'( for each time step, 

𝑝(𝜃	|	𝑟! , 𝑑𝑟!) =
𝑝(𝑟! , 𝑑𝑟!	|	𝜃)	𝑝(𝜃)
∑ 𝑝(𝑟! , 𝑑𝑟!	|	𝜃)	𝑝(𝜃)

. 

The prior, 𝑝(𝜃), represents the probability of selecting a given combination of 
model parameters 𝜃"#$%&'(, and we divide the search space of each 𝜃"#$%&'( by 100 
intervals of equal width (𝑛)%*$ = 100) to initialize the prior, 𝑝(𝜃+*%,%#-). For each time 
step t, the data points (𝑟! and 𝑑𝑟!) are fed into the algorithm where 𝑝(𝑟! , 𝑑𝑟!	|	𝜃), the 
probability of observing 𝑟! and 𝑑𝑟! for all possible combinations of 𝜃"#$%&'(, is 
calculated. 𝑝(𝜃) and 𝑝(𝑟! , 𝑑𝑟!	|	𝜃) are then used to calculate the posterior, 
𝑝(𝜃	|	𝑟! , 𝑑𝑟!), where our beliefs of the underlying 𝜃"#$%&'( are updated based on the 
arrival of new information (𝑟! and 𝑑𝑟!). At the end of each time step, we calculate 
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the confidence interval of each 𝜃"#$%&'( and update our priors as a weighting 
between 𝑝(𝜃	|	𝑟! , 𝑑𝑟!) and 𝑝(𝜃+*%,%#-), 

𝑝(𝜃) = 𝜔&'()'*	𝑝(𝜃	|	𝑟! , 𝑑𝑟!) + (1 − 𝜔&'()'*)	𝑝(𝜃+,)-).(), 

where 𝜔)'-%'. is the belief discount factor that ranges between 0 (larger emphasis 
on past data) and 1 (lower emphasis). This is used to add uncertainty in our beliefs 
in 𝜃"#$%&'( by flattening the prior distribution, where we specify 𝜔&'()'* to be 0.9999.  

An estimate of 𝜃"#$%&'( (𝑎, 𝑏	and	𝜎) and their uncertainty bounds for each time step 
is shown in the figure below. The estimated 𝜃"#$%&'( (from the Bayesian inference 
algorithm) is in good agreement with the underlying 𝜃"#$%&'( that were used to 
generate the underlying interest rates, 𝑟! (red line). Uncertainty in the estimated 
equilibrium value (𝑏!) decreases when the underlying interest rate (𝑟!) is stable and 
when more observations are processed by the algorithm. The estimated 𝜃"#$%&'( 
also correctly adjusts to the change in regime, with larger uncertainties at the 
transition regime. 

 

Unlike frequentist approaches that only provide single point estimate for a given 
dataset, we have shown that a Bayesian approach can be superior because it:  

• allows us to dynamically update our beliefs upon the arrival of new 
information, and 

• provides a confidence interval to reflect uncertainty in the estimated 
quantities.  

The Bayesian approach is widely used in machine learning applications and can 
also be easily applied to calibrate other stochastic models such as a geometric 
Brownian motion.  


